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‘Enhancing Cultural Heritage Building Restoration Processes Through Artificial Intelligence’
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Critical Restoration Theory

¢ Cesare Brandi(Siena),
* Renato Bonelli (Rome),
* Giulio Carlo Argan (Turin),
* Roberto Pane (Naples).
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Existing Non-Destructive Testing (NDT) Methods
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Al assists Al assists
here here

! |

Interpretation
/ Analysis

Output / Decision:
== |dentified Deterioration &
Reports

Signal
Processing

Sensors mmmp NDTSignal
Acquisition

) Achievement % =

NDT Method

Visual

Number of deterioration types detected y

100

NDT Type

Geometric

33 total deterioration types

Detectable

Layer(s)

Surface

Detectable Deteriorations

Cracks. Black crusts, Blistering, Chromatic

Achievement
%

54%

Inspection alteration, Casting, Biological growth,
Vegetation, Crumbling, Detachment,
Surface deposits, Disintegration,
Exfoliation, Erosion, Friability, Sugaring,
Encrustation, Stains, Vandalism
Photogrammetry | Geometric Surface + Cracks, Black crusts, Blistering, Chromatic | 52%
Surface Volume | alteration, Casting, Biological growth,
Vegetation, Deformation, Crumbling,
Detachment, Surface deposits,
Disintegration, Exfoliation, Erosion,
Friability, Lack, Pitting
Laser Scanning Greometric Surface + Deformation, Erosion, Lack, Cracks 15%
Surface Volume | (macro). Surface loss
D ocusurs i aullave v uluLae IUULIUL LB LI, 1AL L Y SLaLILE AU, r
Moisture staining
Microwave Electromagnetic | Near-surface Moisture damage, Salt crystallization, 12%
Moisture Volume Dampness, Subflorescence
Spectroscopy Electromagnetic | Surface Salt crystallization, Black crust, Chromatic 24%
alteration, biological colonisation,
Encrustation, Stains, Patina, Pollution crusts
Vibration Acoustic / Interior Surface Structural eracks, Deformation, Detachment, | 12%
Monitoring Mechaniecal + Interior Dynamic instability
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Cultural Heritage Building

|

Photogrammetric Method=Image Capture (Camera / Drone)

l

Raw Photos / Image Set

|

3D Reconstruction / Point Cloud

!

Al-Assisted Processing

[ I I [ I
Detect cracks Surface Erosion Material Loss Exfoliation Crumbling
[ l l l |

|

Deterioration Map / Report

li Highlighted areas | Monitoring over time

Visual marking on the 3D
model or images showing
locations of detected
deterioration.

Purpose: Helps conservators
quickly see where cracks,
material loss, erosion, or
other damage is present.

Tracking how the deterioration
changes by comparing
photogrammetry data captured
at different times (Structural
Health Monitoring).

Convolutional Neural Semantic segmentation Object detection networks
Networks (CNNs) networks (U-Net, Mask-RCNN) (YOLO, Faster-RCNN)
LV «Cracks +Disintegration L} «Cracks
*Black crusts +Exfoliation *Black crusts
«Blistering Erosion «Blistering
*Chromatic +Pitting «Casting
alteration *Deformation *Biological
«Casting *Crumbling growth
*Biological growth *Detachment *Vegetation
*Vegetation *Surface deposits *Detachment
«Exfoliation
Challenging for both OD and SS: *Vandalism

Friability
Lack (assuming this refers to missing
material, subtle losses) 18 dicembre 2025
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Convolutional Neural Networks
(CNNs)

5 s
B e T T e L 3--
i i

roBeescecenccencnn- ] i e L L L LS ELEEL L L A==
: 3 : -
. =2 2 s|z 2 & 8z 4
. H : I 0 : ;
_, R I 1H : |
A g ;o
nlu_, HHUEEE m i .mmlwxmlmwl.ﬂ.mm = lswlmm '
o ' ' g 3 s ¢ g o
> ~ " - 3 s R '
2 HHBHE ' : ;
X _ | k" i '
-2 . 8 ! : "
89 ilslslsls] = ! 4 "
|=1=1%]|° : ¢ !
c L - ! N P L 3 :
s B . H H : : £ '
3% “. v 4 B - m % :
° Vo b N 3 2 '
g b i :
5 : |2 H B i g :
= " T 8 $ . s ] '
o) ' 5 5 "
e | R (| S '
i "
| L
3 :
e s P —— (T ——— '
: oz -z - 2 v Nz » -z - '
. F P Ea s B 5 5 5 : '

@ = 8. e = - * - - - =
. B i ¥ &l 3 il s 7 i 23 R .
Q@ 2 4 | § = K8 ERC '
> R L’ = nI-:- LR £ £ o3 g mru 4 5 §5 2 a8 '
S Ry R e eyt ;
Q| g o R s IS 8 3 K R = '
@, W ;|38 3 i @ |8, :
- '
s '




Object detection networks (YOLO,

Faster-RCNN)

—» Train: 321

—» Validation: 91

—» Test: 26

Dataset
Collection
&
Annotation

=) | Dataset

YOLOv11
Model

Images ——— 235 Total Images

Bounding
Boxes * Blistering-based

* Crust-waterleakage-based
Class * Vandalism-based

Labels —»

* Biological-colonisation-based

gt it St o

Yolo V11 Architecture
Backbone ek
[ J T
L |
EJ lz*r:
1
Training Step
1
Loss Calculation (from Head Outputs)
Box Loss
B Eo Loss
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3,5
3,0
25
2,0
15
1,0
05
0 50 100 150 200 250 300 350
Epochs
Class Loss
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PTY .
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Object Loss
B Oviect Loss
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"predictions": [
{
"x": 750.5,

"y 347,
"width": 197,
"height": 56,

"confidence": 0.944,
"class": "Paint defects",
"class_id": 3,
"detection_id": "78416eac-8589-4c3e-b04f-b6594a4ff14f"
b
{

"x": 220,

"y": 286,
"width": 62,
"height": 20,

"confidence": 0.916,
"class": "Paint defects",
"class_id": 3,
"detection_id": "892b9120-47a7-48bf-bfca-95dee8afc30c"
b

’ "x": 87.5,
"y":359.5,

"width": 59,

"height": 35,

"confidence": 0.818,
"class": "Paint defects",
"class_id": 3,
"detection_id": "d573b32a-2b05-4776-a75b-1debec15a120"
b

Validation Step

---=—=——————

Head Predictions vs Ground Truth

Model Performance

‘L

Backward Pass & Weight Update (Training Only)

¥

Graphical Visualization

v

{
+ "predictions": [

{
"x": 263.5,
"y": 329.5,
"width": 167,
"height": 473,
"confidence": 0.86,
"class": "Delamination”,
"class_id": 1,
"detection_id": "0f7c6420-fecd-

44fe-9af7-08ba2818e3a9"

b

{
"x": 258,
"y": 316,
"width": 150,
"height": 354,
"confidence": 0.044,
"class": "Dirt- Algae- and mold",

100

150

200

o<vey

[ g mAP@S50.95

250 300 350

"predictions": [

"x": 390,

"y": 788.5,

"width": 112,

"height": 75,

"confidence": 0.876,

"class": "Paint defects",

"class_id": 3,

"detection_id": "21dc3f54-a04d-48d9-b4f9-

a76782b924ab"

h

"x":402.5,

"y": 867.5,

"width": 101,

"height": 99,

"confidence": 0.119,

"class": "Paint defects",

"class_id": 3,

"detection_id": "e2000377-c971-47c3-ac47-

784d14b2b4dd"

h
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Continuation of examination of object detection and
semantic segmentation models

I
EEEE 2 Learning semantic segmentation models
I

1
EEEE 4 Dataset preparation and diversification

I
i
i
i
i

v

Sellection of CH Buildings

I The buildings will be chosen according to
I=m==p deterioration styles

-—-——-

The definition of the achievement rate of
deterioration detection models will be interpreted

v

Thank You
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