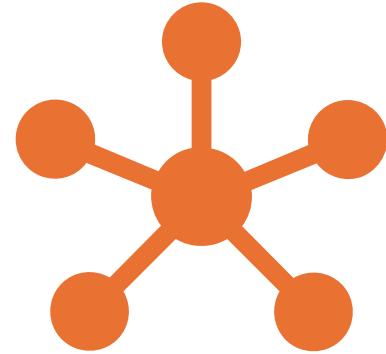


Machine learning for environmental cyber physical systems management

Candidate: Ilenia Ficili

Tutor: Prof. Antonio Puliafito

Context of the study



Internet of Things

Machine Learning

Environmental
Monitoring

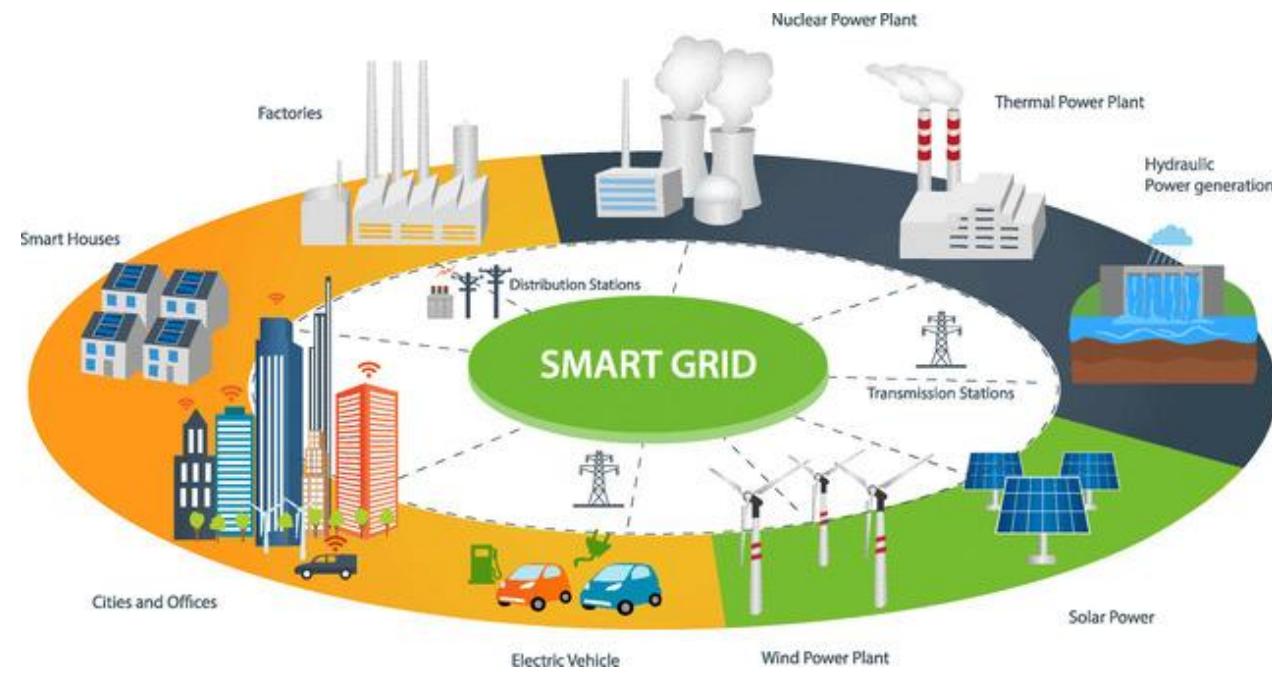
Key Components and Examples of CPS

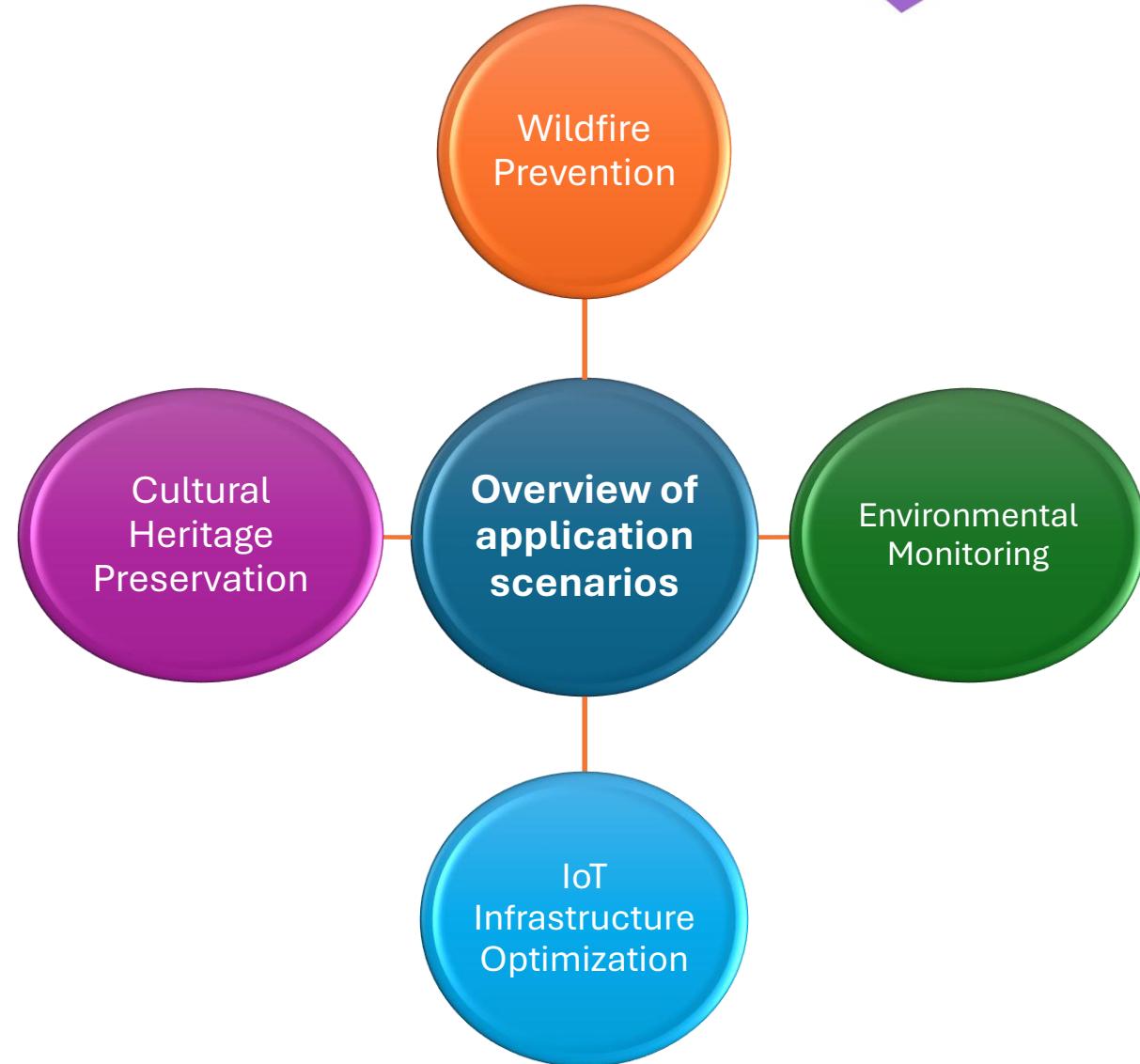
Main components of CPS:

- **Sensors** – Collect data from the environment.
- **Computing Units** – Process data and make decisions.
- **Actuators** – Execute actions based on processed information.

Examples:

- *Autonomous Vehicles*: Sensors detect surroundings, AI makes driving decisions, actuators control movement.
- *Smart Grids*: Optimize energy distribution based on real-time demand.
- *Early Warning Systems*: Detect natural disasters like floods and earthquakes.





Core Methodologies and Technologies

Convolutional Neural Network

Incremental Learning

Federated Learning

INCREMENTAL LEARNING

Incremental Learning (IL) allows AI models to continuously update with new data without retraining from scratch.

Why It's Important:

- Avoids **catastrophic forgetting** – prevents loss of previously learned knowledge.
- Adapts to **changing environments** – models evolve as new patterns emerge.
- Reduces **computational costs** – updates only when necessary.

How It Works

1. **Initial Training** – The model learns from an initial dataset.
2. **New Data Integration** – As new samples arrive, the model updates selectively.
3. **Knowledge Retention** – Mechanisms like memory replay or regularization ensure past knowledge is not lost.

Federated Learning

What is Federated Learning?

A machine learning paradigm where models are trained across decentralized devices or servers.

Data never leaves the local device, ensuring privacy and security.

How it Works:

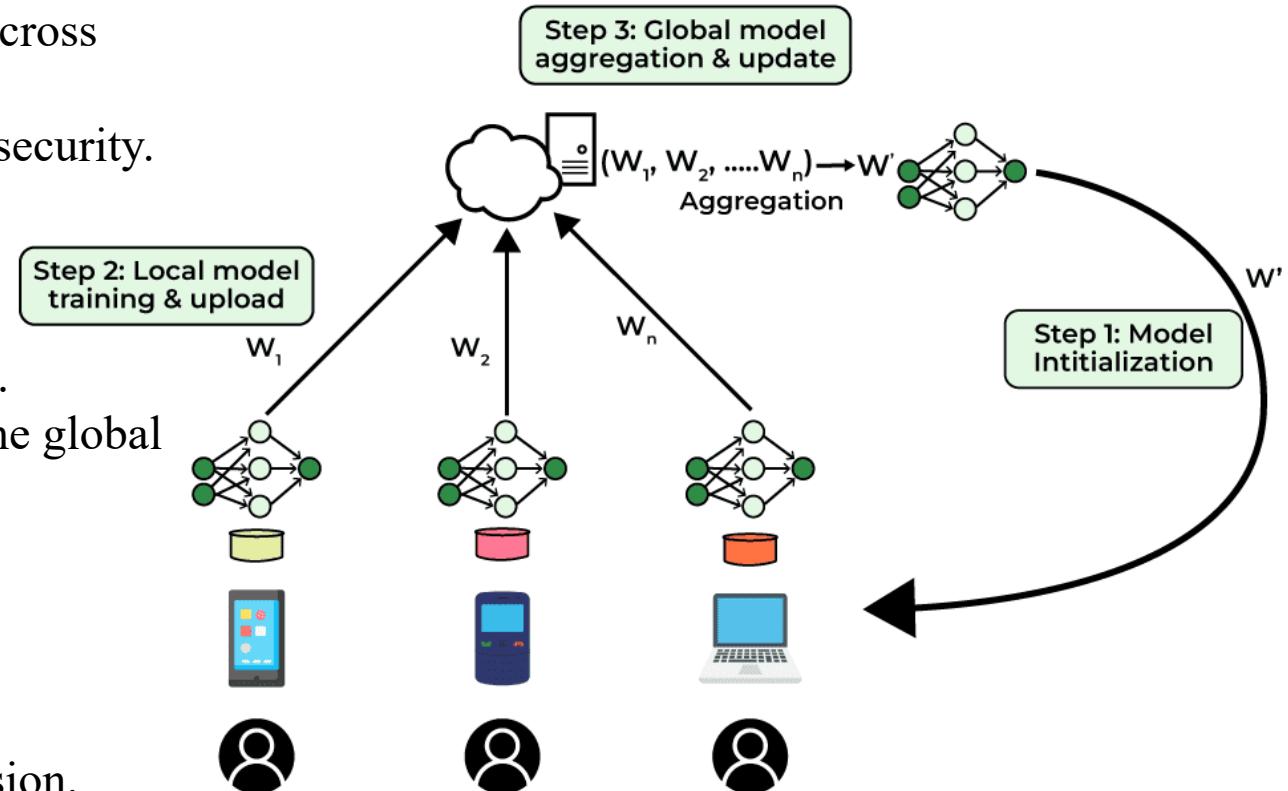
- Local devices train a model on their data.
- Only model updates (weights) are shared, not raw data.
- A central server aggregates these updates to improve the global model.

Key Benefits:

Data Privacy: Sensitive data stays on the device.

Efficiency: Reduces data transfer, enhancing scalability.

Security: Protects against data breaches during transmission.



DILoCC – Distributed Incremental Learning

What is DILoCC?

Distributed Incremental Learning on Computing Continuum.

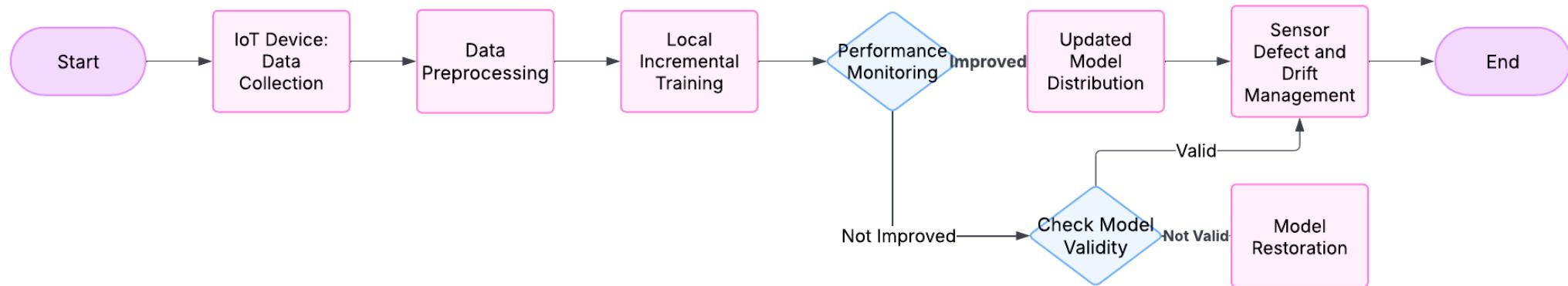
Designed for **dynamic AI model updates** on edge devices.

Key advantages:

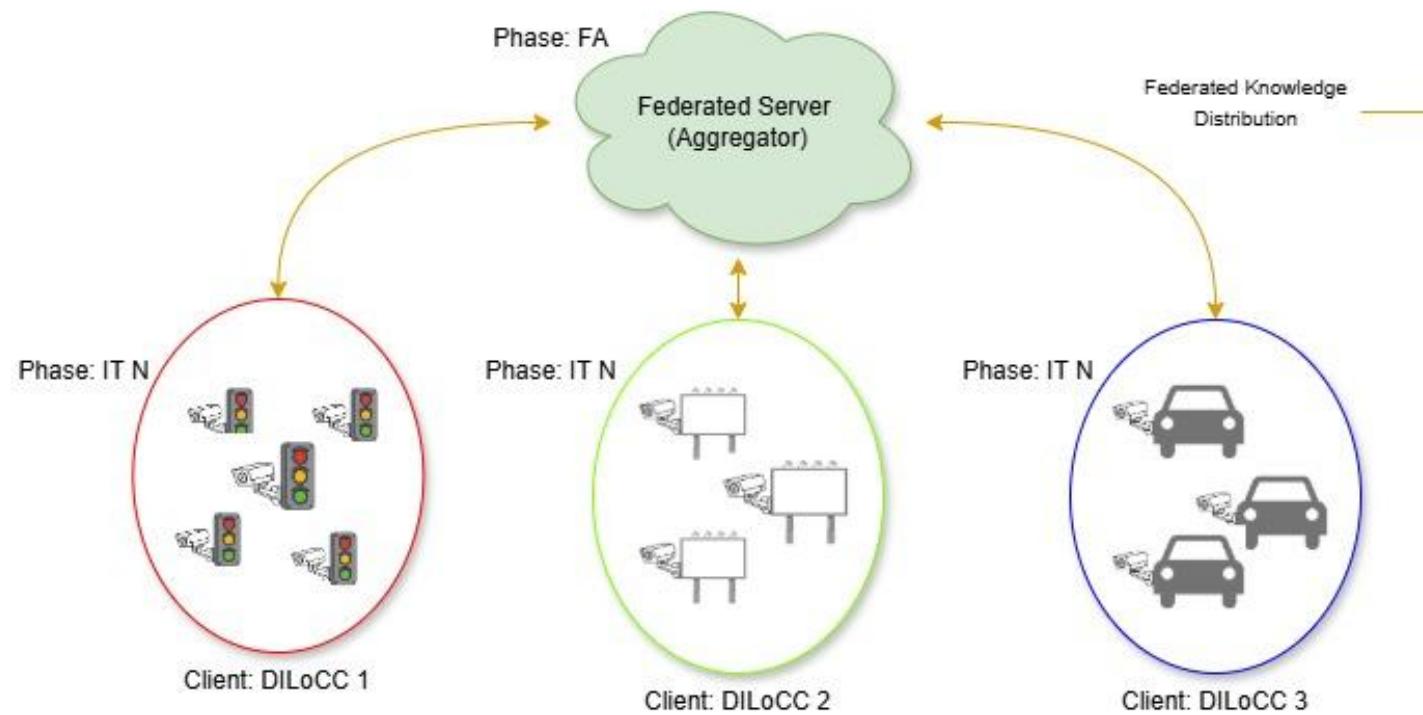
Reduces **latency** and optimizes **resource consumption**.

Uses **cloud + edge computing** for scalable AI deployment.

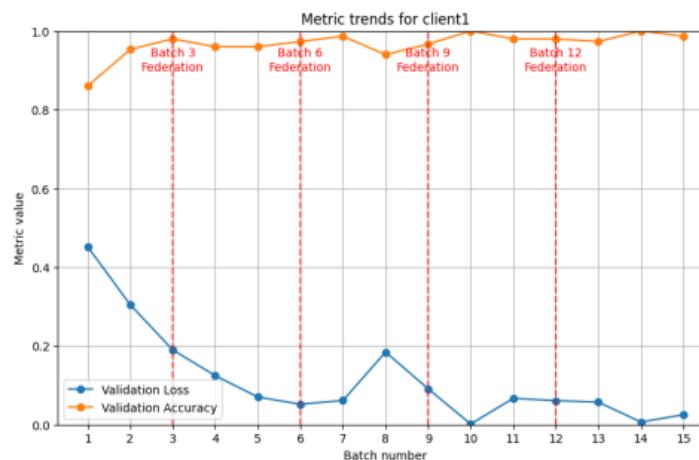
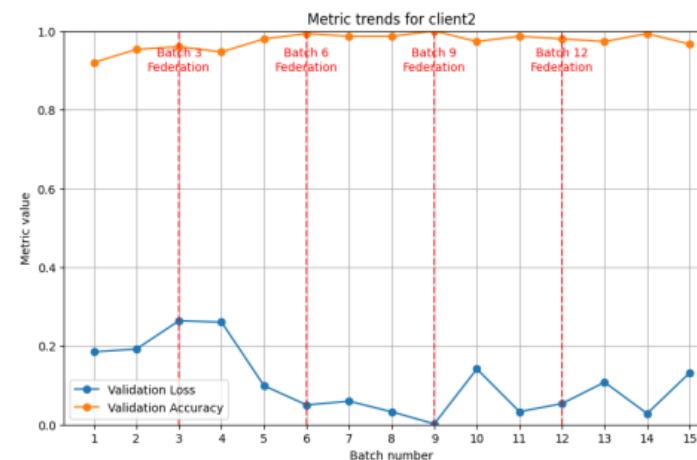
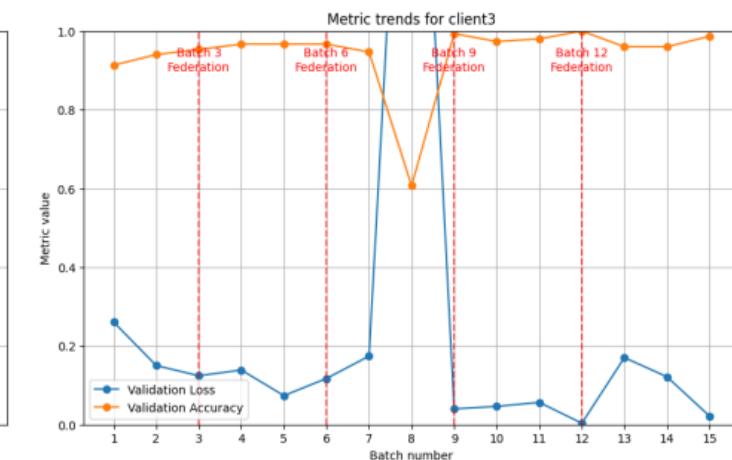
Prevents **catastrophic forgetting**, ensuring continuous learning.



Traffic Management: a hybrid incremental - federated learning approach



Traffic Management: a hybrid incremental - federated learning approach



Metric	Base Model	Client 1	Client 2	Client 3
Accuracy (%)	79.33	97.30	98.00	98.00
Loss	0.6493	0.1591	0.2641	0.0358

HERALD: A FEDERATED-INCREMENTAL APPROACH

- The Covid-19 pandemic exposed the lack of coordination in healthcare systems.
- Infection diagnosis requires efficient tools that minimize direct physician intervention.
- Data privacy regulations hinder centralized training of ML models.
- HERALD applied to **chest X-ray images** (COVID-19 and healthy cases).

Objective:

HERALD integrates **Incremental Learning** and **Federated Learning** to:

- Adapt models to virus mutations over time.
- Enable **privacy-preserving** knowledge sharing across hospitals.
- Mitigate the **Catastrophic Forgetting** issue.

G. Tricomi, G. Cicceri, I. Ficili, S. Vitabile, G. Merlino, and A. Puliafito, "HERALD: a Hybrid distributEd leaRning incrementAL & feDerated solution for knowledge distillation in COVID-19 classification," *Future Generation Computer Systems*, 2025. (submitted)

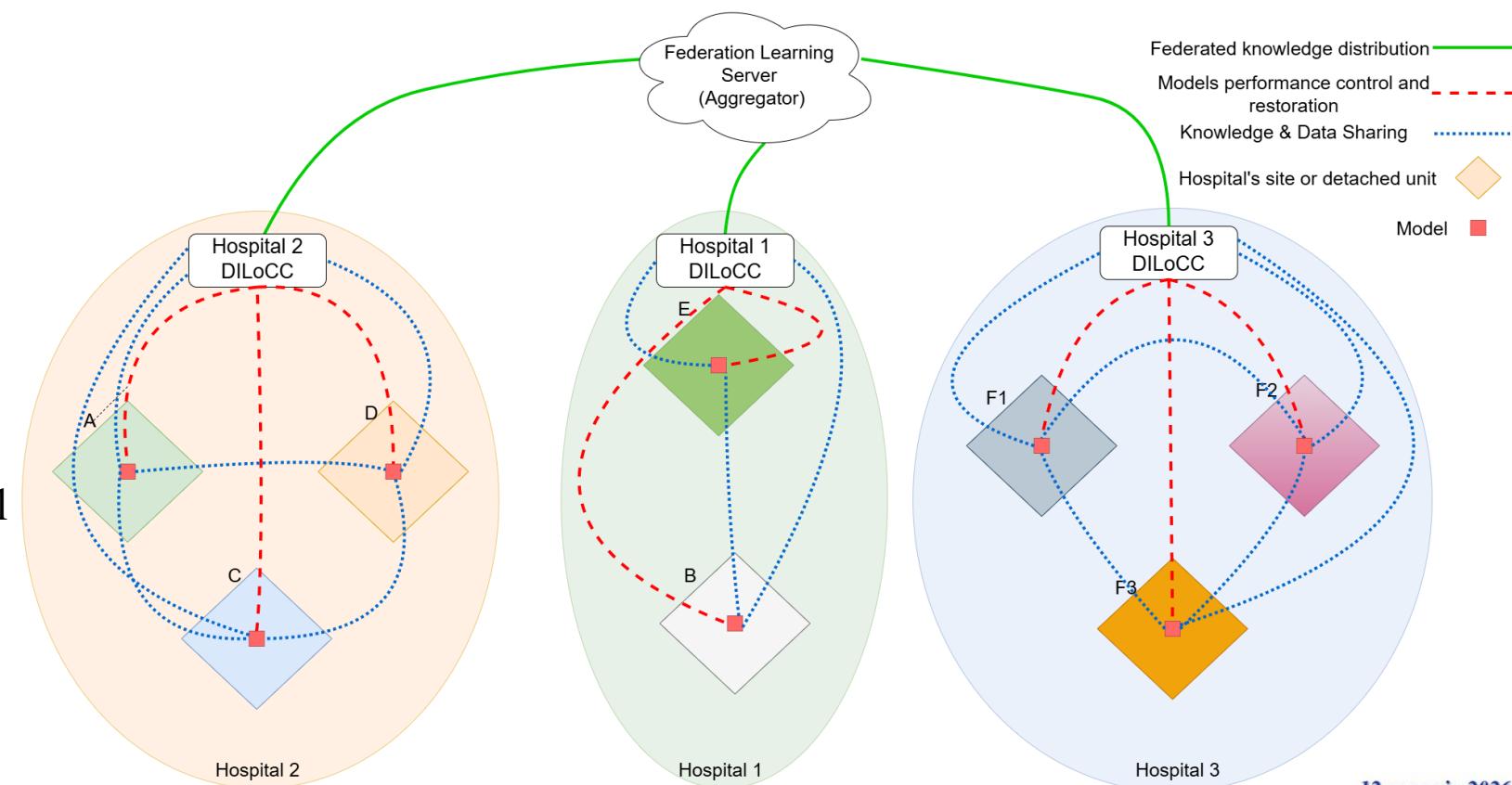
HERALD: A FEDERATED-INCREMENTAL APPROACH

Hybrid Approach:

- **Incremental Learning (IL):** continuous model updates without forgetting previous knowledge.
- **Federated Learning (FL):** decentralized collaboration without sharing raw data.

Results

- **Improved** accuracy, recall, and loss compared to traditional models.
- **Balanced** local adaptation and global knowledge integration.



Using the Knowledge Distillation technique

Knowledge Distillation is a technique used to transfer knowledge from a large, complex model (Teacher) to a smaller and more efficient model (Student).

- The **Teacher model** is usually accurate but computationally expensive
- The **Student model** is smaller and faster, suitable for deployment.
The Student learns not only from ground-truth labels, but also from the soft predictions of the Teacher

Goal: obtain a lightweight model with performance close to the Teacher

How Knowledge Distillation Works

The Teacher produces a probability distribution over classes

A **softmax with temperature (T)** is used to smooth the output probabilities

The Student is trained using a combination of:

- **Standard classification loss** (e.g., Cross-Entropy)
- **Distillation loss** (e.g., KL Divergence between Teacher and Student outputs)

This allows the Student to better generalize and mimic the Teacher's behavior

$$\mathcal{L} = \alpha \mathcal{L}_{CE} + (1 - \alpha) \mathcal{L}_{KD}$$

Benefits:

Reduced model size and inference cost

Comparable accuracy

Well-suited for federated and edge learning scenarios

Thanks for your attention.

Ilenia Ficili
ilficili@unime.it