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Context of the study

Internet of Things Machine Learning Environmental
Monitoring
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Key Components and Examples of CPS

Main components of CPS:

* Sensors — Collect data from the environment.

* Computing Units — Process data and make decisions.

* Actuators — Execute actions based on processed
information.

Examples:

o Autonomous Vehicles: Sensors detect surroundings, Al
makes driving decisions, actuators control movement.

o Smart Grids: Optimize energy distribution based on real-
time demand.

o Early Warning Systems: Detect natural disasters like floods
and earthquakes.
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INCREMENTAL LEARNING

Incremental Learning (IL) allows Al models to continuously update with new data without retraining from scratch.

Why It’s Important:

* Avoids catastrophic forgetting — prevents loss of previously learned knowledge.
« Adapts to changing environments — models evolve as new patterns emerge.

* Reduces computational costs — updates only when necessary.

How It Works

' 1. Initial Training — The model learns from an initial dataset.
2. New Data Integration — As new samples arrive, the model updates selectively.

3. Knowledge Retention — Mechanisms like memory replay or regularization ensure past knowledge is not lost.
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Federated Learning

svey

What is Federated Learning?

A machine learning paradigm where models are trained across [aSgtgp:g:a?ilggaB! me dd;L]
decentralized devices or servers.
Data never leaves the local device, ensuring privacy and security. ‘ (W, W,y W )W
Aggregation
How it Works: [Step 2: Local model] w'
. . . training & upload
* Local devices train a model on their data. 9-tp - w W) [ Step I: Model ]
* Only model updates (weights) are shared, not raw data. ' 2 intitiafization

* A central server aggregates these updates to improve the global
model.
=
[ ]

= =
Key Benefits: .
Data Privacy: Sensitive data stays on the device. o
Efficiency: Reduces data transfer, enhancing scalability. ") ‘.) A
Security: Protects against data breaches during transmission. ® C ) @
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DILoCC - Distributed Incremental Learning
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What is DILoCC?
Distributed Incremental Learning on Computing Continuum.
Designed for dynamic AI model updates on edge devices.

Key advantages:

Reduces latency and optimizes resource consumption.

Uses cloud + edge computing for scalable AI deployment.
Prevents catastrophic forgetting, ensuring continuous learning.
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loT Device: Local Updated
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Traffic Management: a hybrid incremental - federated
learning approach

Phase: FA

. Federated Server |
> (Aggregator)

Phase: ITN Phase: IT N

Client: DILoCC 1

Client: DILoCC 2 Client: DILoCC 3
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Traffic Management: a hybrid incremental - federated
learning approach

Metric trends for clientl Metric trends for client2 Metric trends for client3
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Metric | Base Model | Client 1 | Client 2 | Client 3
Accuracy (%) ‘ 79.33 ‘ 97.30 ‘ 98.00 | 98.00

Loss (0.6493 0.1591 0.2641 0.0358

12 gennaio 2026




HERALD: A FEDERATED-INCREMENTAL APPROACH

= The Covid-19 pandemic exposed the lack of coordination in healthcare
systems.
= Infection diagnosis requires efficient tools that minimize direct physician
intervention.
= Data privacy regulations hinder centralized training of ML models.
= HERALD applied to chest X-ray images (COVID-19 and healthy cases).
Objective:
HERALD integrates Incremental Learning and Federated Learning to:
* Adapt models to virus mutations over time.
* Enable privacy-preserving knowledge sharing across hospitals.
« Mitigate the Catastrophic Forgetting issue.

’ G. Tricomi, G. Cicceri, |. Ficili, S. Vitabile, G. Merlino,
and A. Puliafito, "HERALD: a Hybrid distributEd leaRning
incrementAL & feDerated solution for knowledge
distillation in COVID-19 classification," Future
Generation Computer Systems, 2025. (submitted)
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HERALD: A FEDERATED-INCREMENTAL APPROACH

{

Federated knowledge distribution

Hybrid Approach:

» Incremental Learning (IL):
continuous model updates without
forgetting previous knowledge.

» Federated Learning (FL):
decentralized collaboration without
sharing raw data.

Federation Learning
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Using the Knowledge Distillation techinque

Knowledge Distillation is a technique used to transfer knowledge from a large,
complex model (Teacher) to a smaller and more efficient model (Student).
* The Teacher model is usually accurate but computationally expensive
* The Student model 1s smaller and faster, suitable for deployment.
The Student learns not only from ground-truth labels, but also from the soft
predictions of the Teacher

Goal: obtain a lightweight model with performance close to the Teacher
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How Knowledge Distillation Works

The Teacher produces a probability distribution over classes

A softmax with temperature (T) 1s used to smooth the output probabilities
The Student is trained using a combination of:

- Standard classification loss (e.g., Cross-Entropy)

- Distillation loss (e.g., KL Divergence between Teacher and Student outputs)
This allows the Student to better generalize and mimic the Teacher’s behavior

L= C(LCE + (1 - a)LKD

Benefits:

Reduced model size and inference cost

Comparable accuracy

Well-suited for federated and edge learning scenarios
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Thanks for your attention.

Ilenia Ficili
ilficili@unime.it
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