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Application of OMA: Implementing OMA techniques like EFDD, SSI-COV, SSI-DATA, and 

PolyMax to analyze structural dynamics in response in a new python library (Modalyzer)

Application of OMA Techniques in Python



Application of OMA: Mode shapes and MAC matrix

Application of OMA Techniques in Python
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1. OBJECTIVES

• Investigate structural health monitoring techniques for prestressed concrete bridge girders.

• Perform experimental testing on artificially damaged strands in a controlled lab environment.

• Use advanced sensors and acquisition units provided by SACERTIS to validate results.

Lab Constraints:

• Actuator Sizes: 250 kN, 500 kN, and 1000 kN.

• Control Modes: Displacement-controlled or force-controlled.

• Testing Area Dimensions: 9.0 m x 7.0 m, height 5.0 m.

Experimental campaign

"These objectives aim to advance the understanding of structural damage detection through dynamic monitoring."

2. CONSTRAINTS

"These constraints define the boundaries of the 

experimental campaign and influence the design of 

test setups."



DESIGN OF PRESTRESSED 

CONCRETE BEAM

Cross section geometry: 30 cm x 25 cm

Length = ?                8.0 m             12 prototypes of 8.0 m each (96.0 m of the 100.0 m casting slot), clear span 𝐿 = 7.0 𝑚

Reinforcement = ?                 5+1 prestressing strands 0.5’’, 

area 𝐴𝑡 = 93 mm2 each

𝐴

𝐴

𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝐴 − 𝐴



Beam Design and Manufacturer Constraints

• prestressing strands spacing 5.0 cm in both vertical and horizontal direction

• minimum diameter for prestressing reinforcement ½’’ (𝐴𝑡 = 93 mm2)

• recommended concrete class C45/55 (𝑅𝑐𝑘 = 55 MPa)

• recommended size of concrete section 30 x 25 cm to exploit ongoing casting setup

• recommended length of total casting 100.0 m

• strands release: approx. 16 hours from casting, when cubic mean strength is at least 35 MPa



Casting of the specimens



12 BEAMS:9 BONDED 3 UNBONDED

Types of specimens

Bonded strands

unbonded strands

inspection hole at L/4

inspection hole at L/2

inspection hole at L/3

inspection hole at L/2

D_L_2

D_L_4

D_L_3

UB



Types of specimens

Bonded strands

unbonded strands



OVERLOAD WITH ADDED STEEL BLOCKS ON THE BEAM

𝑠𝑡𝑒𝑒𝑙 𝑏𝑙𝑜𝑐𝑘𝑠



Simulation of the effect of 
transverse diaphragms



SENSORS’CONFIGURATION

MEMS (3D Accelerometer + 2D inclinometer)
Piezoelectric sensor PCB (1D Accelerometer)
LVDT (for deflection measurements) + crack meters
LASER (for deflection measurements)



SENSORS’CONFIGURATION
MEMS (3D Accelerometer + 2D inclinometer)
Piezoelectric sensor PCB (1D Accelerometer)
LVDT (for deflection measurements) + crack meters
LASER (for deflection measurements)



Test Matrix: Bonded & Unbonded Prestressed 
Beams: Tendon-Cut Damage Scenarios

Bonded Beams

First set: with two-tendon cut 

damage scenario

D_L_4_2 with 2 cuts

D_L_3_2 with 2 cuts

D_L_2_2 with 2 cuts

Bonded Beams

Second set: with three tendon 

cut damage scenario

D_L_4_3 with 3 cuts

D_L_3_3 with 3 cuts

D_L_2_3 with 3 cuts

Unbonded Beams

Third set: damage scenario

UB_UD without damage

UB_1 with one strand cut

UB_2 with two strand cuts

inspection hole at L/4

inspection hole at L/3

inspection hole at L/4

inspection hole at L/3

inspection hole at L/2

inspection hole at L/2



LOADING CONFIGURATION FOR SLS

1° 𝑐𝑢𝑡
dynamic test

Repeat for the second 

inspection hole (2+2 cuts)

2° 𝑐𝑢𝑡15kN loading & 

unloading, dynamic test

Damage simulation at serviceability conditions
with transverse beam

first inspection hole



LOADING CONFIGURATION FOR ULS

Damage simulation at ultimate limit states
w/o transverse beam
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LOADING CONFIGURATION FOR ULS

Damage simulation at ultimate limit states
w/o transverse beam
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LOADING CONFIGURATION FOR ULS
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Beam ID PMAX (kN) Disp @ PMAX (mm) ∆𝑝 (%) ∆ disp (%)
Undamaged (UD) 89.55 179.12 -

D_L_4_2 81.56 143.55 -8.9 -19.9
D_L_3_2 64.71 129.39 -27.7 -27.8
D_L_2_2 49.27 103.13 -45.0 -42.4

Frist set
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Beam ID PMAX (kN) Disp @ PMAX (mm) ∆𝑝 (%) ∆ disp (%)
Undamaged (UD) 89.55 179.12 -

D_L_4_3 61.82 99.70 -30.96 -44.33
D_L_3_3 42.92 80.40 -52.07 -55.11
D_L_2_3 30.73 117.78 -65.68 -34.24

Second set
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Beam ID PMAX (kN) Disp @ PMAX (mm) ∆𝑝 (%) ∆ disp (%)

Undamaged (UD) 89.55 179.12 -

D_L_4_2 81.56 143.55 -8.9 -19.9

D_L_4_3 61.82 99.70 -30.96 -44.33

D_L_3_2 64.71 129.39 -27.7 -27.8

D_L_3_3 42.92 80.40 -52.07 -55.11

D_L_2_2 49.27 103.13 -45.0 -42.4

D_L_2_2 30.73 117.78 -65.68 -34.24

Comparison of the Force–Displacement 
Response at Mid-Span for Two Different 
Damage Scenarios : Frist & Second set
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Beam ID PMAX (kN) Disp @ PMAX (mm) ∆𝑝 (%) ∆ disp (%)
Undamaged (UD) 89.55 179.12 -

UB_UD 60.69 181.53 -32.22 +1.34
UB_1 43.07 111.33 -29.03 -38.67
UB_2 28.51 119.94 -53.02 -33.92

Third set
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Tilt derived deflection profile validation with 
Lasers and LVDT
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Tilt derived deflection profile validation with 
Lasers and LVDT

Damage\position Laser A (1.4m) Laser B (2.4m) LVDT (3.5m) Laser D (4.6m) Laser E (5.6m)

1-Cut laser-LVDT -2.71 mm -4.53 mm -5.08 mm -4.45 mm -3.11 mm
1-Cut Tilt -2.88 mm -4.39 mm -5.16 mm -4.68 mm -3.24 mm

1-Cut Error (%) 6.3% 3.1% 1.6% 5.2% 4.1%

2-Cuts laser-LVDT -2.90 mm -4.30 mm -5.11 mm -4.59 mm -3.16 mm

2-Cuts Tilt -2.84 mm -4.38 mm -5.19 mm -4.79 mm -3.35 mm
2-Cuts Error (%) 2.1% 1.9% 1.6% 4.4% 6.0%

3-Cuts laser-LVDT -2.74 mm -4.53 mm -5.29 mm -4.71 mm -3.56 mm

3-Cuts Tilt -2.92 mm -4.50 mm -5.37 mm -5.05 mm -3.65 mm
3-Cuts Error (%) 6.6% 0.7% 1.5% 7.2% 2.5%

4-Cuts laser-LVDT -2.86 mm -4.83 mm -5.44 mm -5.04 mm -3.66 mm

4-Cuts Tilt -2.98 mm -4.57 mm -5.47 mm -5.29 mm -3.92 mm
4-Cuts Error (%) 4.2% 5.4% 0.6% 5.0% 7.1%

5-Cuts laser-LVDT -2.85 mm -5.13 mm -5.71 mm -5.41 mm -4.26 mm

5-Cuts Tilt -3.06 mm -4.73 mm -5.78 mm -5.74 mm -4.36 mm
5-Cuts Error (%) 7.4% 7.8% 1.2% 6.1% 2.4%

6-Cuts laser-LVDT -3.00 mm -5.23 mm -5.98 mm -5.97 mm -4.66 mm

6-Cuts Tilt -3.18 mm -4.96 mm -6.11 mm -6.20 mm -4.72 mm
6-Cuts Error (%) 6.0% 5.2% 2.2% 3.9% 1.3%

MAPE (%) 5.4% 4.0% 1.5% 5.3% 3.9%
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D_L_3_3 deflection profile from tilt during loading of 15 𝒌𝑵
at mid-span (a) and unloading (b)
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D_L_4_3 deflection profile from tilt during loading of 15 

𝒌𝑵 at mid-span (a) and unloading (b)
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D_L_2_3 deflection profile from tilt during loading of 15 𝒌𝑵
at mid-span (a) and unloading (b)
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Comparison of the residual deflection and related 

location for the second damage scenario with 

increasing damage

Damage/Beam 
type

D_L/2_3 damage at 𝐱 = 𝟑. 𝟓𝐦 D_L/3_3 damage at 𝐱 = 𝟒. 𝟔𝟕𝐦 D_L/4_3 damage at 𝐱 = 𝟓. 𝟐𝟓𝐦

𝐮𝐫𝐞𝐬
𝐦𝐚𝐱(𝐦𝐦) 𝐱𝐦𝐚𝐱

𝐥𝐨𝐚𝐝(𝐦) 𝐮𝐫𝐞𝐬
𝐦𝐚𝐱(𝐦𝐦) 𝐱𝐦𝐚𝐱

𝐥𝐨𝐚𝐝(𝐦) 𝐮𝐫𝐞𝐬
𝐦𝐚𝐱(𝐦𝐦) 𝐱𝐦𝐚𝐱

𝐥𝐨𝐚𝐝(𝐦)

After 1 cut -0.40 3.51 -0.33 4.63 -0.28 5.13

After 2 cuts -0.51 3.55 -0.36 4.62 -0.41 4.98

After 3 cuts -0.87 3.52 -0.76 4.73 -0.66 5.23

After 4 cuts -1.18 3.51 -0.92 4.67 -0.95 5.11

After 5 cuts -1.60 3.51 -1.45 4.70 -1.46 5.19

After 6 cuts -1.93 3.52 -1.72 4.67 -1.81 5.10



NUMERICAL MODELING

Nonlinear staged construction 

analysis in SAP2000

Mode shapes of PC beams with steel blocks w/o transverse beam

Mode-1 Mode-2(L) Mode-3(L) Mode-4 Mode-5

Enhanced FEM 7.20 8.84 17.96 20.25 43.19
Undamaged_(MEMS) 7.17 8.43 18.16 19.54 44.25
FBG-undamaged 7.20 8.72 - 19.46 43.63



Curvature Damage Factor (CDF)

Curvature Damage Factor (CDF)

𝑵 is total number of modes

𝝊𝒐
′′ is the undamaged curvature mode shape

𝝊𝒅
′ is the damaged curvature mode shape

Slope Damage Factor (SDF)

𝑵 is total number of modes

𝝊𝒐
′′ is the undamaged slope mode shape

𝝊𝒅
′ is the damaged slope mode shape

DAMAGE DETECTION IN BRIDGES USING MODAL CURVATURES: APPLICATION TO A REAL DAMAGE SCENARIO

by G. DE ROECK, M. M. ABDEL WAHAB, 1999, Journal of Sound and Vibration
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Time History of accelerations for MEMS & PCB

MEMS

PCB
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PSD comparison

MEMS PCB
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SVD comparison

MEMS PCB
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1st Bending mode (7.11 Hz)

MEMS

PCB
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2nd Bending mode (19.31 Hz)

MEMS

PCB
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3rd Bending mode (43.76 Hz)

MEMS

PCB
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4th Bending mode (69.00 Hz)

MEMS

PCB



RESULTS AT SLS – MODAL CURVATURE COMPARISON L/3 = 466 cm



Bonded beam – Damage at L/2: Curvature CDF for 
bending modes 



Bonded beam – Damage at L/3: Curvature CDF 
for bending modes 



Bonded beam – Damage at L/4: Curvature CDF for 
bending modes 



R04-3 : Damages in three inspection window
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Serviceability _ loading unloading15kN_All zones



46

Serviceability _ loading unloading15kN
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Serviceability _ loading unloading15kN
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Serviceability _ loading unloading15kN
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Serviceability _ loading unloading15kN
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THANK YOU FOR YOUR KIND ATTENTION

Amir Shamsaddinlou
Suprvisor: Dario De Domenico

amir.shamsaddinlou@studenti.unime.it
dario.dedomenico@unime.it
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